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The Privacy Analysis of the Differential Private
Stochastic Gradient Descent

Fabrizio Boninsegna

Abstract—As data privacy concerns become increasingly
paramount, the development and analysis of privacy-preserving
machine learning algorithms have emerged as a critical area
of research. This paper provides an introduction to the diverse
techniques and methodologies employed in the privacy analysis
of the Differential Private Stochastic Gradient Descent (DP-
SGD) algorithm, a pivotal tool in the realm of privacy-preserving
machine learning.

To guarantee private learning, DP-SGD simply injects con-
trolled noise into the gradient updates during model training.
Nonetheless, the privacy analysis of the algorithm still gives some
challenges. Standard differential private composition techniques
are not useful for DP-SGD as it requires the addition of noise
many times in the mini batch setting. To solve these problems,
many techniques have been developed that make full use of the
noise distribution and the mathematical properties of the loss
function. In particular, we will delve into the Moments Accountant
method, the Privacy Amplification by Iteration and Langevin Dy-
namics, by exposing these techniques under a common notation.

I. INTRODUCTION

Machine Learning and Deep Learning suffer from privacy
issues, as noted by Fredrikson et al. who demonstrated a
black box model-inversion attack that recovers images from
a facial recognition system [FJR15]. Moreover, an adversary
with full knowledge of the training mechanism and access to
the model’s parameters is more likely to reconstruct part of the
training dataset due to memorization [HVY+22]. Differential
privacy emerges as a powerful tool in this context, providing a
framework to use data for training deep learning models while
safeguarding individual privacy.

II. PRELIMINARIES OF DIFFERENTIAL PRIVACY

Differential privacy is a mathematical concept that ensures
the outputs of a computation (like a deep learning model’s
predictions) are not significantly affected by any single data
point. In simple terms, it guarantees that the removal or
addition of one individual’s data does not substantially change
the outcome of a data analysis or the behavior of a model.
The privacy guarantees of a differential private mechanism
are measured by the privacy budget ε and by the failure
probability δ, which measures the probability to violet the
privacy guarantees. In the literature it is considered accepted
a privacy budget ε ∈ (0, 10) and a δ = O(1/n) where n is
the dimension of the dataset considered.

Definition II.1 ((ε, δ)-differential privacy [DR+14]). A ran-
domized mechanism M : D → R with domain D and range
R satisfies (ε, δ)-differential privacy if for any two adjacent

inputs d,d′ ∈ D and for any subset of outputs S ⊆ R it holds
that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ (1)

Another way to define differential privacy is by using the
privacy loss random variable.

Definition II.2 (Privacy loss random variable [DR16]). The
privacy loss of a randomized mechanism M : D → R is
a random variable defined as the log-likelyhood ratio of two
distinct inputs

ξ(y;M, x, x′) = log

(
Pr[M(x) = y]

Pr[M(x′) = y]

)
(2)

The relation between privacy loss and (ε, δ)-DP is the
following

Theorem II.1 (Privacy loss and (ε, δ)-DP). If a randomized
mechanism M : D → R has a privacy loss such that

Pr[sup
y∈R

ξ(y;M, x, x′) ≥ ε] ≤ δ ∀x ∼ x′,

then M is (ε, δ)-DP.

A common paradigm for approximating a deterministic real-
valued function f : D → Rd with a differential private
mechanism is via additive noise calibrated to f’s sensitivity
S
(p)
f , which is defined as the maximum absolute ℓp distance
S
(p)
f = supd∼d′ ||f(d)−f(d′)||p computed on adjacent inputs.

The injection of Gaussian noise satisfies differential privacy

Theorem II.2 (Gaussian Mechanism in the High Privacy
Regime [DR+14]). Let ε ∈ (0, 1) be arbitrary. For c2 >
2 ln(1.25/δ), the Gaussian Mechanism M(f(x)) = f(x) +

N (0, σ21d) with parameter σ ≥ cS
(2)
f /ε is (ε, δ)-differential

private.

The Gaussian Mechanism is still (ε, δ)-differential private
for large value of ε, but the computation of σ is more
complicated (Theorem 8 in [BW18]).

A crucial property of differential privacy is that it is closed
under adaptive composition. Therefore, we can use many
differential private mechanism on the same private dataset,
using adaptively the results of each mechanism, and still get
a differential private release.

Theorem II.3 (Advanced Composition [DR+14]). For all
ε, δ, δ′ ≥ 0, the adaptive composition of k differential private
mechanism with the same parameter ε, δ is (ε′, kδ + δ′)-
differential private mechanism with:

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1). (3)
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In the high privacy regime ε < 1 we have that ε′ =
2
√
2k ln(1/δ′)ε.

When a differential private mechanism gets inputs on a
random subset of the dataset, which is usually the case for
stochastic gradient descent, the privacy is amplified by a
constant factor.

Theorem II.4 (Privacy Amplification by Subsampling
[BBG18]). If M is an (ε, δ)-DP mechanism, then the sub-
sample mechanism M◦S, where S selects a random sample
of D using Possion sampling with probability q, is (log(1 +
q(eε − 1)), qδ)-DP.

In particular, in the high privacy regime ε < 1 we have that
M◦ S is (O(qε), O(qδ))-DP.

III. PRELIMINARIES OF STOCHASTIC GRADIENT DESCENT

Deep neural networks define parameterized functions from
inputs to outputs as compositions of many neural network
layers. These parameters are ”trained” on data by minimiz-
ing an objective function called loss. More precisely, the
loss L(θ,D) on parameters θ ∈ Rd is the average of
the loss over the training examples D = {x1, . . . ,xn}, so
L(θ,D) = 1

n

∑
i ℓ(θ,xi). For complex networks, a standard

practice to find the parameters which minimize the loss is by
stochastic gradient descent. At each step one forms a batch
B of random examples and computes the batch loss gradient
gB = 1

|B|
∑

i∇θℓ(θ, xi) as an estimation of the true gradient
∇θL(θ). Then θ is updated following the gradient direction
−gB towards the local minimum.

To render the training phase differential private the standard
procedure is to inject Gaussian noise into the batch gradient
loss g̃B = gB +N (0, σ2(S

(2)
gB )21d). Notice that we insert the

sensitivity of the batch gradient loss directly in the variance of
the Gaussian distribution for convenience, as this allows us to
consider any function with sensitivity one. The sensitivity of
the gradient can be computed using the Lipschitz properties
of the loss, or simply by clipping the gradient on a maximum
ℓ2 norm. A comprehensive introduction the the loss sensitivity
can be found in Appendix A.

A standard implementation of DP-SGD with gradient clip-
ping was introduced by [ACG+16] and it is described in
Algorithm 1.

A. Standard Advanced Composition Result
By choosing σ ≥

√
2 ln(1.25/δ)/ε and ε ∈ (0, 1), one

application of Gaussian noise in stochastic gradient descent is
satisfies (ε, δ)-differential privacy. Using privacy amplification
by sub-sampling [BBKN14] we get a (qε, qδ)-differential
private algorithm for q = O(1/n) (to ensure a random batch of
constant size), then by advanced composition of T iterations
we ends up with

(2
√
2T ln(1/δ′)qε, qTδ + δ′)-differential private.

Let’s set the standard deviation in order to get a constant (ε, δ)-
differentially private algorithm. By neglecting constant factor
we have that for

σ ≥ Ω

(
q
√
T log(1/δ) log(T/δ)

ε

)
(4)

Algorithm 1 DP-SGD: Differentially private stochastic gradi-
ent descent
Require: Examples {x1, . . . ,xn}, loss function ℓ(θ,x),

learning rate η, noise scale σ2, sampling probability q,
gradient norm bound C, number of iteration T .

Initialize θ0 randomly
for t ∈ [T ] do

Sample random mini batch
Take a random sample Bt using Poisson sampling
with probability q.
Compute gradient
For each i ∈ Bt, compute gt(xi)← ∇θℓ(θt, xi)
Clip gradient
// this fixes the sensitivity of the gradient
ḡt(xi)← gt(xi)/max

(
1, ||gt(xi)||2

C

)
Add noise
g̃t ← 1

B

(∑
i ḡt(xi) +N (0, 4σ2C21d)

)
Descent
θt+1 ← θt − ηg̃t

end for
return θT and compute the overall privacy cost (ε, δ)

we get an overall (ε, δ)-differentially private algorithm. This is
the most simple result that we can get using standard properties
of differential privacy. This result is independent by the noise
distribution we are using, as long it satisfies (ε, δ)-DP, and by
the loss properties.

IV. MOMENTS ACCOUNTANT

This is the standard privacy analysis implemented in most
libraries for differential private deep learning [YSS+21]. It
is a new technique for differential private composition that
takes into account the shape of the probability density function
used for generating noise. It is based on bounding the moment
generating function of the privacy loss random variable. Con-
sider the privacy loss ξ(y;M, x, x′) defined in definition II.2
for adjacent datasets x and x′. For the mechanism M, we
define the λth moment αM(λ;x, x′) as the log of the moment
generating function evaluated at value λ:

αM(λ;x, x′) := logEy∼M(x)[exp(λξ(y;M, x, x′))].

The quantity of interest is the maximum λth moment over all
possible adjacent inputs

α(λ) := max
x,x′

αM(λ;x, x′). (5)

The moment accountant theorem upper bounds αM(λ) for all
λ, where M is an adaptive composition of k mechanisms.
Moreover, it tells how to compute δ for any ε > 0.

Theorem IV.1 (Moments Accountant [ACG+16]). Let αM(λ)
be defined as (5). Then

1) Composability. Suppose that a mechanism M consists
of a sequence of adaptive mechanisms M1, . . . ,Mk.
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Then, for any λ

αM(λ) ≤
k∑

i=1

αMi
(λ)

2) Tail-bound. For any ε > 0, the mechanismM is (ε, δ)-
differentially private for

δ = min
λ

exp(αM(λ)− λε).

In particular, for the Gaussian noise the authors in
[ACG+16] demonstrated an asymptotic upper bound for the
maximum log moment generating function

α(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O

(
q3

σ3

)
,

which allows to demonstrate a better bound for the T adaptive
composition of Gaussian mechanisms.

Theorem IV.2 (Moment Accountant for Gaussian Mechanism
[ACG+16]). There exist constant c1 and c2 so that given the
sampling probability q = O(1/n) (with n dimension of the
private dataset) and the number of steps T , for any ε < c1q

2T
the k adaptive composition of T Gaussian mechanisms on a 1-
sensitivity function is (ε, δ)-differentially private for any δ > 0
if we choose

σ ≥ c2
q
√
T log(1/δ)

ε

Asymptotically, with the moments accountant method we
save a

√
log(T/δ) factor in the standard deviation.

This new composition technique makes full use of the
shape of the noise distribution, allowing to get smaller privacy
budget. However, the technique is not as practical as the
standard advanced composition, as it requires the study of the
moment generating function of the privacy loss. This inspires
the development of Rényi differential privacy.

V. RÉNYI DIFFERENTIAL PRIVACY

Based on the work done by [ACG+16] with the moments
accountant, and the new definition of concentrated differential
privacy [DR16] (based on sub-Gaussian distributions) and
zero-concentrated differential privacy [BS16] (based on Rényi
divergence, but it requires a linear bound for all positive
moments), I. Mironov [Mir17] developed the concept of Rènyi
differential privacy based on the concept of Rényi divergence.

Definition V.1 (Rényi divergence). The Rényi divergence of
order α between two distribution µ and ν is

Dα(µ||ν) =
1

α− 1
log

[ ∫ (
µ(x)

ν(x)

)α

ν(x)dx
]

Definition V.2 (Rényi differential privacy [Mir17]). A ran-
domized mechanism M : D → R is said to have ε-Rényi
differential privacy of order α, or (α, ε)-RDP for short, if for
any adjacent x, x′ ∈ D and α ∈ (1,∞) it holds that

Dα(M(x)||M(x′)) ≤ ε,

A bound on the Rényi divergence is a bound on the log
moment generating function of the privacy loss. Indeed, we
can rewrite (IV) as

αM(λ;x, x′) = logEy∼M(x)

[(
Pr[M(x) = y]

Pr[M(x′) = y]

)λ]
= logEy∼M(x′)

[(
Pr[M(x) = y]

Pr[M(x′) = y]

)λ+1]
,

where in the last equality we performed a change of mea-
sure in the expectation value. Recall the definition of Rényi
differential privacy

Dα(M(x)||M(x′)) = 1
α−1 logEy∼M(x′)

[( Pr[M(x)=y]
Pr[M(x′)=y]

)α]
,

it is clear the similarity between the upper bound on the Rényi
divergence with the upper bound of the log moment generating
function of the privacy loss. Indeed, we have

Dλ+1(M(x)||M(x′)) =
1

λ
αM(λ;x, x′).

The Rényi differential privacy definition is then a well suited
mathematical tool for the moments accountant method.

A. Properties of the Rényi differential privacy

Rényi differential privacy behaves well under adaptive com-
position

Proposition V.1 (Adaptive Composition). Consider k mech-
anisms satisfying (α, ε)-RDP. The k adaptive composition of
these mechanisms satisfies (α, kε)-RDP.

As the Rényi differential privacy is built from the generating
function of the privacy loss, the moment accountant composi-
tion applies fundamentally. Indeed, this composition is a direct
application of the composability theorem IV.1

It is also relatively easy to turn Rényi differential privacy
into standard differential privacy

Proposition V.2 (From RDP to (ε, δ)-DP). IfM is an (α, ε)-
RDP mechanism, it also satisfies (ε + log(1/δ)

α−1 , δ)-differential
privacy for any 0 < δ < 1.

However, this transition from RDP to DP is not optimal
[ZDW22].

The main advantage of using Rényi differential privacy is
that it offers a nice and simple analysis for the Gaussian
mechanism.

Proposition V.3. The Gaussian mechanism on µ-sensitivity
functions satisfies (α, αµ

2

2σ2 )-RDP.

Usually, many theorems in differential privacy are stated for
1-sensitivity function. For the Gaussian mechanism is easy
to transform µ-sensitive function into 1-sensitive one. It is
sufficient to rescale the noise variance σ2

Proposition V.4. The µ re-scaled Gaussian mechanism

MG(f(D)) = f(D) +N (0, σ2µ21d),

is
(
α, α

2σ2

)
for µ-sensitivity functions.
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The privacy amplification by subsampling property for
Rényi differential privacy was study in [WBK19]. Their the-
orem 9 offer a full non asymptotic view of this property
and it is quite complicated. Still, for large standard deviation,
small α and small q = O(1/n), the amplification factor from
(α, α/2σ2)-RDP is(

α,O

(
q2α

σ2

))
− RDP

A precise analytical and numerical evaluation of the Sample
Gaussian Mechanism is given in [MTZ19],

B. Rényi Differential Privacy for the Stochastic Gradient
Descent

By applying standard composition of Rényi differential pri-
vacy for the Gaussian mechanism, and the asymptotic privacy
amplification by subsampling in [WBK19] we obtain the same
asymptotic result of the Moment Accountant method, hence a
standard deviation lower bound

σ ≥ Ω

(
q
√
T log(1/δ)

ε

)
.

The proof is in the Appendix B1.
Still, this amplification holds only in the setting of private

sub-sample and mostly important, only in the high privacy
regime, hence for ε ≪ 1 or σ ≫ 1. In the next section we
present a new technique that allows to relax this assumption
on the privacy regime.

VI. PRIVACY AMPLIFICATION BY ITERATION

Privacy amplification by subsampling depends crucially on
the sample’s randomness and secrecy, which in some scenario
are difficult to ensure, like in the distributed machine learning
setting. More importantly, we only get amplification in the
high privacy regime not allowing a privacy budget ε > 1.
Practically, this is a problem as usually DP mechanism in the
high privacy regime has poor utility due to the privacy-utility
trade off.

So far we did not use the fact that we are only interested in
releasing the last iteration of the DP-SGD, meaning that we
can keep the intermediate iterations secrets. The composition
theorems for Rényi differential privacy (but also advanced
composition) does not require the secrecy of the intermediate
steps, so in principle we could release all the intermediate
parameters updates θt of the model without changing the
privacy budget. This seems excessive, as we only release the
last update θT . Can we get better privacy by requiring the
secrecy of the intermediate steps?

The authors in [FMTT18] showed that by keeping the inter-
mediate steps private and releasing just the last parameters of
the iteration, we can get a new amplification theorem that gives
results similar to the amplification by sampling techniques,
without requiring Poisson sampling nor high privacy regime.

The intuition is the following, consider this noise iterative
mechanism

Xt+1 = ψt+1(Xt) +N (0, σ21d).

Let’s consider the identity case where ϕt = 1 for all steps
t ∈ {0, . . . , T} and fix the sensitivity ||X0 −X ′

0|| ≤ 1. Each
mechanism is (α, α

2σ2 )-RDP and a simple composition would
lead to a T adaptive (α, α

2σ2T )-RDP. However, let’s consider
the final XT and X ′

T random variables. As the variance of
the sum of independent Gaussian random variable increases
linearly we have

XT = X0 +N (0, Tσ21d)

X ′
T = X ′

0 +N (0, Tσ21d).

If we release only XT then we can bound the Rényi divergence
of XT and X ′

T . As ||X0 −X ′
0|| ≤ 1 we have that

Dα(XT ||X ′
T ) ≤ Dα(N (0, Tσ21d)||N (1, Tσ21d))

=
α

2Tσ2
.

Interestingly, by releasing only XT we obtain a privacy
budget that shrinks with the iteration instead of increasing
linearly. The authors in [FMTT18] showed that this identity
case is actually the worst case of a more general theorem
valid for contractive Noise Iteration. In the following we will
introduce the main definition and concept that are necessary
to understand the main theorem of privacy amplification by
iteration [Theorem 22, [FMTT18]].

Definition VI.1 (Contraction). For a Banach space (Z, || · ||),
a function ψ : Z → Z is said to be contractive if it is 1-
Lipschitz. Namely, for all x, y ∈ Z ,

||ψ(x)− ψ(y)|| ≤ ||x− y||.

Definition VI.2 (Contractive Noisy Iteration (CNI)). Given
an initial random state X0 ∈ Z , a sequence of contractive
functions ψt : Z → Z , and a sequence of noise distributions
{ξt}, we define the Contractive Noisy Iteration (CNI) by the
following update rule:

Xt+1 := ψt+1(Xt) + Zt+1.

where Zt+1 is drawn independently from ξt+1. For brevity, we
will denote the random variable output by this process after
T steps as CNIT (X0, {ψt}, {ξt}).

To interpolate the metric distance on the inputs at t = 0
with an information theoretic divergence at t = T the authors
in [FMTT18] defined a new divergence called Shifted Rényi
divergence. The theorem they stated is quite general and
complicated as they use this new concept of shifted Rényi
divergence and magnitude of noise for shifted distribution.
Here we state only the theorem for contractive Gaussian noise
iterations. A full version of the theorem can be found in
Appendix C.

Theorem VI.1 (Privacy Amplification by Iteration for
Gaussian Noise). Let XT and X ′

T denote the output of
CNIT (X0, {ψt}, {ξt}) and CNIT (X0, {ψ′

t}, {ξt}), for ξt ∼
N (0, σ21d). Let st := supx ||ψt(x)−ψ′

t(x)||. Let a1, . . . , aT
be a sequence of reals and let zt :=

∑
i≤t si −

∑
i≤t ai. If

zt ≥ 0 for all t and zT = 0, then

Dα(XT ||X ′
T ) ≤

α

2σ2

T∑
i=1

a2t .
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A. Application to DP-SGD on fixed batches

In order to have contractive maps we need to assume that
the loss function is convex and smooth, indeed a well known
theorem of convex optimization states that for convex and β-
smooth loss, the stochastic gradient descent is a contraction
for a learning rate η < 2/β. It is important to note, as the
authors did, that the standard DP-SGD uses non convex losses
as generally a clip mechanism does not preserve convexity.
Therefore, the analysis of DP-SGD with privacy amplification
by iteration works only if we remove the clip and use β-
smooth and convex losses. Still, we need a bound on the gra-
dient to tune the differential private noise, hence the sensitivity.
According to this need, we assume also L-Lipschitzness for
the losses, this will ensure an upper bound on the total gradient
sensitivity (see Appendix A.2).

In [FMTT18] the authors provided an analysis for the
stochastic gradient descent on convex, smooth and Lipshitz
losses for the 1-mini batch realization, hence only batches of
size one which are practical in the distributed setting. In this
review we perform an analysis of the same mechanism but
with fixed batches of size B, trying to match as much as
possible the initial DP-SGD.

Let’s fix two adjacent databases D = {x1, . . . ,xi, . . . ,xn}
and D′ = {x1, . . . ,x

′
i, . . . ,xn}, differing at i-th position. As

the privacy amplification by iteration does not require Poisson
sampling, we group the databases in Q = n/B batches
of size B getting D = {B1, . . . , Bκ, . . . , BQ} and D′ =
{B1, . . . , B

′
κ, . . . , BQ}, where Bj = {x(j−1)B+1, . . . ,xjB}.

These two grouped databases differ in the batch at position κ.
The algorithm to analyze is written in Algorithm 2

We need to study the contraction ψ

ψt(θ) = θ − η

B

∑
xℓ∈B(t mod Q)

∇ℓ(θ, xℓ).

In particular, we need to compute the distance with the same
contraction on the adjacent dataset at every iteration t. Fol-

Algorithm 2 DP-SGD: fixed batches
Require: Examples {x1, . . . ,xn} divided in Q non-

intersecting batches {B1, . . . , BQ} each of size B,
L-Lipschitz loss function L(θ) = 1

N

∑
i ℓ(θ, xi), learning

rate η, noise scale σ2.

Initialize θ0 randomly
for j ∈ [T ] do

for i ∈ [Q] do
t← Qj + i
Compute gradient
For each xℓ ∈ Bi, compute gt(xℓ)← ∇θℓ(θt, xℓ)
Add noise
g̃t ← 1

B

(∑
ℓ gt(xℓ) +N (0, 4σ2L2Id)

)
Descent
θt+1 ← θt − ηg̃t

end for
end for
return θT , and compute the overall privacy cost

lowing the theorem notation we have that st = supθ |ψt(θ)−
ψ′
t(θ)|, hence

st = sup
θ

∣∣ η
B

∑
xℓ∈B(t mod Q)

∇ℓ(θ, xℓ)+

− η

B

∑
xℓ∈B′

(t mod Q)

∇ℓ(θ, xℓ)
∣∣.

The batches differs of an examples only in the batch at position
κ, hence

st =

{
0 for t = κ mod Q
2ηL
B for t ̸= κ mod Q

.

According to this bound we can define the following sequence

at =


0 if 0 ≥ t < κ
2ηL
BQ if κ ≤ t < Q(T − 1) + κ

2ηL
B(T−κ+1) if Q(T − 1) + κ ≤ t ≤ QT

As Q > 1 we have that zt =
∑

i≤t st −
∑

i≤t at ≥ 0.
Moreover, we have that

zT =
2ηL

B
T − 2ηL

BQ
(Q(T − 1))+

− 2ηL

B(Q− κ+ 1)
(QT −Q(T − 1)− κ+ 1) = 0.

Therefore, we can use the particular case of the theorem
without computing any shifted Rényi divergence. Let’s write
explicitly the contractive noise iteration

θt+1 = ψt+1(θt) +N (0,
4σ2η2L2

B2
1d),

it is important to consider the full variation of the inserted
noise. Let’s now apply the theorem

Dα(θQT , θ
′
QT ) ≤

αB2

8σ2η2L2

QT∑
t=1

a2t

≤ α

2σ2

[
1

Q2

(
Q(T − 1) +

1

Q− κ+ 1

)]
≤ α

2σ2Q2
K

Where at the end we explicitly wrote the total number of itera-
tion K = QT . For q = 1/Q = n/B we get the same result of
privacy amplification by sub sampling: (α,O(q2α/σ2))-RDP.
Interestingly, now this result is valid for any privacy regime
and for any batches size, as it is only required to not share
intermediate steps.

Beside the privacy amplification by iteration theorem, this
article laid the foundation to a series of new analysis under the
Hidden State Assumption, going beyond standard composition
techniques. In the last section we will explore a new technique
which uses this hidden state assumption with a particular
property of the loss function, the strong-convexity property,
to remove the linear dependence T from the Rényi privacy
budget.
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Algorithm 3 Noisy Gradient Descent (DP-GD)
Require: Dataset of examples D = {x1, . . . ,xn}, loss func-

tion L(θ;x), learning rate η, noise variance σ2, initial
parameter vector θ0, total gradient sensitivity Sg .

for k ∈ [T ] do
∇L(θk;D)←

∑n
i=1∇ℓ(θk;xi)

θk+1 ← θk − η∇L(θk, D) +
√
2ηN (0, σ21d)

end for
return θT

VII. LANGEVIN DYNAMICS AND PRIVACY CONVERGENCE
IN THE HIDDEN STATE MODEL

An important step forward in the analysis of DP-SGD was
done by R. Chourasia and J. Ye in [CYS21]. They proposed to
analyze DP-SGD as the dynamics of two coupled stochastic
process. In particular, they constructed a pair of continuous-
time Langevin diffusion [SN14] that fit the discrete noisy up-
date of the gradient descent. Using the Fokker-Plank equation
[RR96] they computed a bound on the Rényi divergence under
the hidden state assumption. The high level intuition is to
interpreted the gradient updates as a stochastic process with a
stationary distribution, and so to relate privacy loss with the
mixing time of the stochastic process1. A short introduction on
Langevin dynamics and Fokker Plank equation can be found
in Appendix D. The main result was a privacy convergence
for arbitrary updates under the assumption of strong convex
loss function. The authors concentrated their effort in studying
the full batch differential private gradient descent described
in Algorithm 3. Notice that the noise in the update rule is
different. The usual way is

θk+1 = θk −
η

n
(∇L(θk, D) +N (0, σ2S2

g1d))

So the results in [CYS21] have to be rescaled with this
transformation

σ2 7→
ηS2

g

2n2
σ2, (6)

in order to be compatible with the other results in this paper.
The following theorem is, indeed, a restatement of the main

result in [CYS21].

Theorem VII.1 (Privacy Guarantees for noisy gradient descent
[CYS21]). Let L(θ,x) be a λ-strongly convex, and β-smooth
loss function on closed convex set C, with a finite total gradient
sensitivity Sg , then the noisy gradient descent algorithm with

start parameter θ0 ∼ ΠC(N (0,
ηS2

gσ
2

λn2 1d)), and step size η <
1
β , and number of epochs T , satisfies (α, ε)-RDP with

ε =
4

λη

α

2σ2
(1− e−ληT/2)

This analysis works only for the full batch gradient descent
update, indeed the privacy amplification by sub sampling is not
present in Theorem VII.1, still, it is surprising that the privacy
budget convergences for large value of iteration. However, is

1The mixing time is the time necessary for a stochastic process to reach
its stationary distribution

not clear how the coefficient 1/λη behaves. We know that
η < 1/β and λ < β (as β and λ are relatively the highest
and the lower eigenvalues of the Hessian matrix of the convex
function), so τ = 1/λη > 1. Regarding the noise variance, in
order to get a (ϵ, δ)-DP mechanism we have to pose

σ ≥ Ω

(√
τ log(1/δ)

ε

)
for τ =

1

λη
.

The stochastic gradient descent algorithm using the ap-
proach developed in [CYS21] was studied in [RBP22]. How-
ever it does not introduce the amplification by sampling
technique and so it does not improve the privacy bound.

We now introduce the techniques of coupled Langevin
diffusion

A. The Coupled Langevin Diffusion Techniques

Let’s write the gradient descent update for two neighboring
datasets. We write ∇L(θ,D) = ∇LD(θ)θk+1 = θk − η∇LD(θk) +

√
2ησ2Zk

θ′k+1 = θ′k − η∇LD′(θ′k) +
√
2ησ2Zk

withZk ∼ N (0,1d),

In the original paper [CYS21] the authors introduced also a
projection step into a convex parameters set, we avoided to
introduced it as it is not an essential ingredient. This discrete
un-coupled stochastic process can be interpolate by a continu-
ous coupled stochastic process on time ηk ≤ t ≤ η(k+1) by
introducing an auxiliary random variable Θt defined Θηκ = θκ
at t = ηk and for ηk < t ≤ η(k + 1):Θt = Θηk − ηU1(Θηk)− (t− ηk)U2(Θηk) +

√
2(t− ηk)σ2Zk

Θ′
t = Θ′

ηk − ηU1(Θ
′
ηk) + (t− ηk)U2(Θ

′
ηk) +

√
2(t− ηk)σ2Zk

,

where
U1(θ) =

1

2
(∇LD(θ) +∇LD′(θ)),

U2(θ) =
1

2
(∇LD(θ)−∇LD′(θ)),

So at t = η(k + 1) we have Θt = θk+1. In the following
we will make use of Wiener processes and Fokker Plank
equation, see Appendix D for a short introduction. With this
transformation we can write the stochastic differential equation
for the updates{

dΘt = −U2(Θk) +
√
2σ2dWt

dΘ′
t = −U2(Θ

′
k) +

√
2σ2dWt

,

where Wt is the d-dimensional Wiener process. This coupled
stochastic process models the one step discrete process and it
is called tracing process. Therefore, we can think of the full
discrete process of T updates as T tracing processes which
are described by continuous time updates.

With this formulation we can now model the tracing process
using the Fokker Plank formulation, hence for ηk < t ≤ η(k+
1) the evolution of the conditional probability density function
pt|ηk(θ|θk) = p(Θt = θ|Θηk = θk) is

∂pt|ηk(θ|θk)
∂t

= ∇ · (pt|ηk(θ|θk)U2(θk)) + σ2∇2pt|ηk(θ|θ′k)

∂p′t|ηk(θ|θk)
∂t

= −∇ · (p′t|ηk(θ|θ
′
k)U2(θk)) + σ2∇2p′t|ηk(θ|θ

′
k)

. (7)



7

The condition probability is necessary as the tracing process
is not defined at t = ηk, so it is necessary to condition the
probability for Θηk = θk, to guarantee that the continuous
process fits the underlying discrete process.

By taking the expectation over probability density function
pηk(θk) and p′ηk(θ

′
k) on both sides of equation 7 we obtain

the partial differential equation that models the evolution of
(unconditioned) probability density function in the coupled
tracing diffusions.

∂pt(θ)

∂t
= ∇ · (pt(θ)Vt(θ)) + σ2∇2pt(θ)

∂p′t(θ)

∂t
= ∇ · (p′t(θ)V ′

t (θ)) + σ2∇2p′t(θ)

(8)

where Vt(θ) = −V ′
t = Eθk∼pηk|t [U2(θk)|θ]. The main

advantage of this formulation is that we can now make full
use of an interesting results in [CYS21] that bounds the rate
of the Rényi privacy loss

Lemma VII.1 (Rate of Rényi privacy loss [CYS21]). Given
coupled diffusion in equation 8 and Sv = maxθ ||Vt(θ) −
V ′
t (θ)|| ∀t ≥ 0, the Rènyi privacy loss rate at any t ≥ 0 is

upper bounded by

∂Dα(Θt||Θ′
t)

∂t
≤ 1

γ

αS2
v

4σ2
− (1− γ)σ2α

Iα(Θt||Θ′
t)

Eα(Θt||Θ′
t)

(9)

where γ > 0 is a tuning parameter, Iα is the Rènyi information
and Eα is the moment generating function of the ratio Θt/Θ

′
t

computed at α.

a) Observation: Notice that for γ = 1 we obtain after
integration

Dα(ΘT ||Θ′
T ) ≤

αS2
v

4σ2
T.

By setting T = ηK, ΘT = θK , changing sigma as in (6) we
get

Dα(ΘT ||Θ′
T ) ≤

αS2
v

2σ2

n2

S2
g

Then by using the result S2
v ≤

S2
g

n2 (Lemma 4 in [CYS21])
we get the standard bound for the Gaussian Mechanism
Dα(ΘT ||Θ′

T ) ≤ α
2σ2 .

Interestingly, with this formulation we have a negative
additive term which is − 1

2σ
2α Iα

Eα
< 0. This term, if properly

handled, will make the privacy converge.

Handle the ratio between Iα/Eα is complicated and
requires knowing the pdf of θ at any time. The authors used
a recent result found in [VW19] to lower bound the ratio
Iα/Eα using c-Log Sobolev Inequality [Gro75]. The new
bound of equation 9 can be rewritten as

∂D(α, t)

∂t
≤ 1

γ

αS2
v

4σ2
− 2(1− γ)σ2c

[
D(α, t)

α
+ (α− 1)

∂D(α, t)

∂α

]
,

where D(α, t) = Dα(Θt||Θ′
t). The authors solved this PDE

by computing an upper bound for the solution for each K
tracing diffusion process. The overall solution can be found by

iteratively compose the upper bound of each tracing diffusion,
obtaining

Dα(ΘηK ||Θ′
ηK) ≤

αS2
g

2cσ4n2
(1− e−σ2cηK)

Without entering in the details, the authors in [CYS21]
demonstrated that the coupled continuous stochastic diffusion
in equation 8 satisfies the c-Log Sobolev Inequality if the loss
is λ-strong convex, getting the main result (after an opportune
transformation in the variance) stated in Theorem VII.1.

For the first time, by using some properties of the loss
function, it was demonstrated that some differential private
algorithm can add noise indefinitely without increasing the
privacy budget, under the Hidden State Assumption.

A subsequent work introduced also the amplification by sub
sampling in this analysis [YS22].

B. Langevin Dynamics with Privacy Amplification by Sub-
Sampling

The fact that privacy budget converges to a constant for
a large number of iteration is a breakthrough result, as deep
learning model usually needs a large number of epochs to be
trained. However, it converges to a huge constant O(α/σ2).
Privacy amplification by sub-sampling gives a factor O(1/n2)
to the overall privacy budget, but standard analysis did not
show converges yet, getting O(αT/(σ2n2)). So for T ≪ n2,
privacy amplification by sub-sampling still is the best choice
yet.

The subsequent work [YS22] studied the coupled Langevin
diffusion with privacy amplification by subsampling. In partic-
ular, the authors demonstrated a privacy amplification theorem
for random batch construct with sampling with replacement of
examples. This is a better approach than Poisson sampling for
two reason: the random batches created have a fixed size b,
so computationally the sampling runs in O(b) times instead of
O(n). Their result is quite complicated as it offers a recursive
technique of how computing the privacy budget. We expose it
here for completeness, following the notation of DP-SGD in
this article (hence applying the transformation in equation 6
with n 7→ b as the algorithm samples a batch of fixed size b).

Theorem VII.2 (Recursive amplification by sampling without
replacement). If the loss function ℓ(θ;x) is λ-strongly convex,
β-smooth, and if its gradient has finite ℓ2-sensitivity Sg . Then
DP-SGD under sampling without replacement and stepsize
η < 2

λ+β satisfies (α, ε)-RDP with

ε ≤ 1

α− 1
log(S0

K(α))

where the terms Sj
k(α) for k = 0, . . . ,K − 1 and j =

0, . . . , n/b− 1 are recursively computed by

S0
0(α) = 1

Sj+1
k (α) =

b

n
e

(α−1)α

2σ2 · Sj
k(α) +

(
1− b

n

)
· Sj

k(α)
(1−ηλ)2

S0
k+1(α) = S

n/b
k (α)
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VIII. CONCLUSIONS

In this article we presented the differential private stochastic
gradient descent algorithm, the state of the art privacy technol-
ogy to train machine learning and deep learning models. We
presented three different techniques developed in this context
to analyze better the privacy properties of the algorithm.
The moments accountant was the first new privacy analysis
technique developed for the DP-SGD algorithm. It allows to
reduce the privacy budget than would have been computed
with standard techniques, by leveraging on the Gaussian
properties of the noise distribution. However, it’s applicability
is bounded to the high privacy regime and Poisson sampling.

The second techniques exposed is the privacy amplification
by iteration, which does not require neither high privacy
regime nor Poisson sampling, but only the hidden state as-
sumption, hence to not release intermediate updates. Nonethe-
less, it requires additional assumption on the loss, such as
smoothness and lipschitzness.

Both the previous techniques give a linear increase of the
privacy budget with number of epochs, which is undesirable
especially for deep learning application. The Langevin dynam-
ics techniques solved this problem by using ad additional prop-
erty of the loss, the strong convexity. All these techniques were
exposed using the same notations highlighting the deficiencies
and the improvements.

Further techniques were developed that are not described
in this article such as the privacy amplification by iteration
with privacy amplification developed in [AT22], or the use of
Hockey-stick divergence instead of Rényi divergence to study
DP-SGD as done in [AD23]. This field is indeed an active
research area as on important question needs to be answered
in order to an adoption for general deep learning algorithm:
Does the privacy budget converges at any number of epochs
with no assumption on the loss function?
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APPENDIX

A. Loss Function Properties

For any data record x ∈ X , a loss function is L(θ,x) :
C × X → R, where C ⊆ Rd is usually a closed convex set.
The gradient of the loss with respect to the parameter θ is
defined as ∇L(θ;x)

Definition A.1 (Lipschitz continuity). A function L(θ,x) is
L-Lipschitz continuous if for all θ, θ′ ∈ C and x ∈ X ,

|L(θ,x)− L(θ′,x)| ≤ L||θ − θ′||2 (10)

The Lipschitzness condition bounds the sensitivity of the
gradient loss

Proposition A.1 (Lipschitz sensitivity). The gradient sensitiv-
ity S(2)

∇L of an L-Lipschitz loss is S(2)
∇L ≤ 2L.

Proof: We need to bound the l2 gradient sensitivity for
all parameters θ ∈ C

S
(2)
∇L = sup

x∼x′
||∇θL(θ,x)−∇θL(θ,x′)||2, (11)

where x ∼ x′ indicates two neighbor datasets. From the L-
Lipschitzness condition we can bound the l2 gradient norm

||∇θL(θ,x)||2 =
|L(θ + dθ,x)− L(θ,x)|

||dθ||2
≤ L.

Using the triangle inequality on 11 we get

S
(2)
∇L ≤ sup

x∼x′
||∇θL(θ,x)||2 + ||∇θL(θ,x′)||2 ≤ 2L

Proposition A.2 (Lipschitz sensitivity of the total gradient
loss). For L-Lipschitz loss function, the total gradient loss
LB(θ) =

∑
x∈B ∇θL(θ, x) over a batch of any size B has an

ℓ2 sensitivity
S
(2)
LB(θ) ≤ 2L (12)

Proof:

S
(2)
LB(θ) = ||

∑
x∈B

∇θL(θ, x)−
∑
x∈B′

∇θL(θ, x)||2

= ||∇θL(θ, xκ)−∇θL(θ, x′κ)||2 ≤ 2L,

where in the first equality we used the fact that the two batches
comes from adjacent dataset, so they can differ by at most one
element, which is in generally at κ position. The last inequality
comes from Proposition A.1.

Definition A.2 (Smoothness). Differentiable function L(θ,x)
is β-smooth over C if for all θ, θ′ ∈ C and x ∈ X

||∇L(θ,x)− L(θ′,x)|| ≤ β||θ − θ′||2 (13)

Definition A.3 (Strong Convexity). Differentiable function
L(θ,x) is λ-strongly convex if for all θ, θ′ ∈ C and x ∈ X

L(θ′,x) ≥ L(θ,x) +∇L(θ,x)T (θ− θ′) + λ

2
||θ′ − θ||2 (14)

2The authors found that the smoothness assumption can be effectively
removed by convolving the loss with a Gaussian distribution

B. Rényi Differential privacy

1) Privacy Analysis of DP-SGD: Consider the application
of Possion sampling with probability q = O(1/n), where
n is the number of the examples, to construct a random
batch B. In the high privacy regime, privacy amplification by
subsampling for the Gaussian mechanism leads to a (α, c q

2α
σ2 )-

RDP mechanism, for some constant c > 0. The adaptive
composition of T Gaussian mechanisms satisfies (α, cTq2α

σ2 )-
RDP. Using proposition V.2, for any 0 < δ < 1 we get an
(ε, δ)-DP mechanism with

ε =
cTq2α

σ2
+

log(1/δ)

α− 1
. (15)

We search the best divergence order α∗ by differentiating the
privacy parameter

∂

∂α

[
cTq2α

σ2
+

log(1/δ)

α− 1

]
=
cTq2

σ2
− log(1/δ)

(α− 1)2
.

By posing the derivative equal to zero we obtain

α∗ = 1 +

√
σ2 log(1/δ)

cTq2
.

We insert α∗ in equation 15

ε =
cTq2

σ2
+ 2

√
cTq2 log(1/δ)

σ2
. (16)

We set a new variable x =
√
cTq2/σ2 and solve Equation 16

for x
x2 + 2

√
log(1/δ)x− ε = 0.

The solution of the equation above is

x =
√
log(1/δ) + ε−

√
log(1/δ)

=
ε√

log(1/δ) + ε+
√

log(1/δ)
≤ ε

2
√

log(1/δ)
.

By inserting x = q
√
cT/σ we get

σ ≥ Ω

(
q
√
T log(1/δ)

ε

)
2) RDP of Sample Gaussian Mechanism: We present here

a non asymptotic results for the Sample Gaussian Mechanism,
which is the Gaussian mechanism applied to a random batch
constructed using Poisson sampling.

Definition A.4 (Sample Gaussian Mechanism (SGM)). Let f
be a function mapping subsets of D to Rd. We define the
Sample Gaussian mechanism (SGM) parameterized with the
sampling rate 0 < q ≤ 1 and the noise σ > 0 as

SGq,σ(D) :=f({x : x ∈ D is sampled with probability q})
+N (0, σ21d),

where each element of D is sampled independently at random
with probability q without replacement, and N (0, σ21d) is
spherical d-dimensional Gaussian noise with per-coordinate
variance σ2.
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Article σ for (ε, δ)-DP Techniques Loss assumption Deficiencies

[ACG+16] Ω

(√
T ln(1/δ)

nε

)
Moments Accountant

Privacy amplification by sub-sampling
No assumption on the loss
Sensitivity using clipping

Poisson sampling for the batches
High privacy regime

[Mir17] Ω

(√
T ln(1/δ)

nε

)
Standard Composition of RDP

Privacy amplification by sub-sampling
No assumption on the loss
Sensitivity using clipping

Poisson sampling for the batches
High privacy regime

[FMTT18] Ω

(√
T ln(1/δ)

nε

)
Privacy amplification by iteration

convex
L-Lipshitz
β-smooth

The update step has to be a contraction

[CYS21] Ω

(√
ln(1/δ)

ε

)
Coupled Langevin diffusion

β-smooth
L-Lipschitz

λ-strong convex
Strong convexity assumption

Table I
RECAP OF THE DIFFERENT TECHNIQUES USED TO ANALYZE DP-SGD.

Symbol Meaning
D Database of example
D′ Database of example adjacent to D

x or x Particular example in D
B Batch of examples of D
b Size of the batch B
Sf ℓ2 sensitivity of the function f
θ Parameters of a model
d Dimension of the model parameters

ℓ(θ, x) Loss function with parameter θ evaluated on example x
L(θ,B) =

∑
x∈B ℓ(θ, x) Total loss function with parameter θ evaluated on batch B

L(θ, x) = 1
B
L(θ,B) Average total loss function

η Learning rate for the gradient descent
L Lipshitz constant for the loss
β Smoothness constant for the loss
λ Strong convexity constant for the loss
C Clipping constant for the loss
T Number of iteration, hence number of noise insertion
ε Rènyi or standard privacy budget
δ Probability of uncontrolled breach in standard DP

ξ(M, x, x′) Privacy loss random variable of the mechanism M computed on dataset x and x′

α Rényi differential privacy order
Dα(µ||ν) Rényi divergence between two distribution µ and ν
Eα(µ||ν) α-th moment of likelihood ration between distribution µ and ν
Iα(µ||ν) Rényi information of distribution ν and ν

Table II
TABLE OF NOTATIONS

Theorem A.1 ([MTZ19]). If q ≤ 1
5 , σ ≥ 4, and α satisfy

1 < α ≤ 1

2
σ2L− 2 log σ,

α ≤
1
2σ

2L2 − log 5− 2 log σ

L+ log(qα) + 1
2σ2

,

where L = log
(
1+ 1

q(α−1)

)
, then SGM applied to a function

of ℓ2-sensitivity 1 satisfies (α, ε)-RDP where

ε =
2q2α

σ2

C. Privacy Amplification by Iteration

Definition A.5 (Shifted Rényi Divergence). Let µ and ν
be distributions defined on a Banach space (Z, || · ||). For
parameters z ≥ 0 and α ≥ 1, the z-shifted Rényi divergence
between µ and ν is defined as

D(z)
α (µ||ν) := inf

µ′:W∞(µ,µ′)≤z
Dα(µ

′||ν).

Where W∞(µ, ν) is the ∞-Wasserstein distance between the
two distributions

W∞(µ, ν) := inf
γ∈Γ(µ,ν)

ess sup
(x,y)∈γ

||x− y||.

It is the essential supremum distance of the infimum coupling
Γ(µ, ν) over the Banach space.

This divergence is called shifted as it is upper-bounded by
the Rényi divergence of a shifted distribution

D(||x||)
α (µ||ν) ≤ Dα(µ ∗x||ν)

Note that µ∗x is the distribution of U + where U ∼ µ.
The final ingredient is the magnitude of noise for shifted

distributions

Definition A.6 (Magnitude of Noise for Shifted Distribution).
For a noise distribution ξ over a Banach space (Z, || · ||) we
measure the magnitude of noise by considering the function
that for a > 0, measures the largest Rényi divergence of order
α between ξ and the same distribution ξ shifted by a vector
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of length at most a

Rα(ξ, a) := sup
x:||x||≤a

Dα(ξ ∗x||ξ).

In particular, for Gaussian noise we have that

Rα(N (0, σ21d), a) =
αa2

2σ2

We are now ready to state the complete privacy amplifica-
tion by iteration theorem.

Theorem A.2 (Privacy Amplification by Iteration [FMTT18]).
Let XT and X ′

T denote the output of CNIT (X0, {ψt}, {ξt})
and CNIT (X0, {ψ′

t}, {ξt}). Let st := supx ||ψt(x) − ψ′
t(x)||.

Let a1, . . . , aT be a sequence of reals and let zt :=
∑

i≤t si−∑
i≤t ai. If z ≥ 0 for all t, then

D(zT )
α (XT ||X ′

T ) ≤
T∑

i=1

Rα(ξt, at).

In particular, if zT = 0, we have

Dα(XT ||X ′
T ) ≤

T∑
i=1

Rα(ξt, at).

D. Langevin Diffusion and Fokker Plank Equation

A Langevin diffusion process in Rd with noise variance σ2

is described by the following stochastic differential equation
(SDE)

dθt = −f(θt, t)dt+
√
2σ2dWt

Where f(θt, t) is the drift function, and Wt is the standard d-
dimensional Wiener process. A Wiener process can be seen as
the integral of a white noise Gaussian process, so the random
variable dWt ∼

√
dtN (0,1d). The Fokker Plank equation

characterizes the evolution of the probability density of the
random variable θt. Indeed, if p(θ, t) indicates the pdf of θ
at time t, and θt is Langevin diffused, then the Fokker Plank
equation states that

∂p(θ, t)

∂t
= −∇θ

[
f(θ, t)p(θ, t)

]
+ σ2∇2p(θ, t).

It is worth mentioning that the above equation is valid for Ito’s
stochastic calculus. The stationary distribution of the process
(for ∂p(θ, t)/∂t = 0) is the Gibbs distribution

π(θ) ∝ e
f(θ,t)

σ2 .

E. Sampling techniques

We will consider two different sampling mechanism to cre-
ate the batch. Given a dataset of examples D = {x1, . . . , xn}
we construct a batch B using:

• Poisson Sampling: each element in D is sampled with
probability q

B = {x : x ∈ D sampled with probability q}

This sampling technique creates batches of different size
with expected size E[b] = qN .

• Sample without replacement: sample b different exam-
ples from D

B = {x : x ∈ D sampled without replacement}.

This technique produces batches of fixed size b and it is
a practical alternative to Poisson sampling.
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