
INFTDA: A SIMPLE TOPDOWN MECHANISM FOR
HIERARCHICAL DIFFERENTIALLY PRIVATE COUNTING QUERIES

Fabrizio Boninsegna
University of Padova

fabrizio.boninsegna@phd.unipd.it

ABSTRACT

This paper extends InfTDA, a mechanism proposed in (Boninsegna, Silvestri, PETS 2025) for
mobility datasets with origin and destination trips, in a general setting. The algorithm presented
in this paper works for any dataset of d categorical features and produces a differentially private
synthetic dataset that answers all hierarchical queries, a special case of marginals, each with bounded
maximum absolute error. The algorithm builds upon the TopDown mechanism developed for the
2020 US Census.

1 Introduction

Consider a dataset D ∈ Xn, where the data universe X is defined as the Cartesian product of d categorical features,
X = X1 × · · · × Xd. For example, this setting can represent a healthcare dataset with attributes such as ("medical
condition", "nationality", "age", "gender"), or a geographic dataset with attributes such as ("country", "state", "city").
One of the most relevant classes of queries in these datasets is marginals. Given a subset S ⊆ [d] and specific values
yi ∈ Xi for each i ∈ S, a marginal query asks: "how many records in D have, for each attribute i ∈ S, the value
equal to yi?" The aim is to release a differentially private (DP) synthetic dataset D̃ that can accurately answer all such
marginal queries. InfTDA, introduced in [1] for mobility data, constructs a synthetic dataset D̃ that achieves a bounded
maximum absolute error of Õ(

√
k3d) for any k-hierarchical query, where a k-hierarchical query is a marginal query

with S = [1, . . . , k]. The algorithm employs a TopDown approach, initially developed by the US Census Bureau [2],
which leverages differentially private and optimized k-hierarchical queries as constraints to refine the estimation of
(k + 1)-hierarchical queries.

Related Work The most straightforward method is to generate a contingency table of D, which is its histogram
representation 1, and add Gaussian noise to each count 2. The resulting differentially private contingency table can
answer all marginal queries; however, the variance grows linearly with the number of noisy counts required, leading
to an absolute error of Õ(e(d−k)/2) for any marginal with |S| = k. By focusing solely on k-hierarchical queries, an
alternative approach would be to release a differentially private contingency table D̃i for each query. In this case, each
query could be answered with a maximum absolute error of Õ(

√
kd) 3. However, this strategy requires handling d

separate tables, which may be inconsistent with one another. Hay et al. [3] were the first to introduce the concept
of hierarchical queries and to observe that accuracy can be improved by resolving such inconsistencies. The authors
proposed a hierarchical tree structure, similar to the one defined for InfTDA, to organize the queries and developed the
hierarchical mechanism, which enforces consistency through constrained optimization. A key limitation of this approach
is that it produces a full DP contingency table with non-integral counts and without ensuring non-negativity. The
authors identified the incorporation of non-negativity constraints as an open direction for future work. The most notable
work with real-world application is undoubtedly the Disclosure Avoidance System TopDown algorithm, developed
by the US Census Bureau [2]. This method follows a similar principle to the hierarchical mechanism but differs in

1The histogram representation of D is hD ∈ N|X|
0 defined for each x ∈ X1 × · · · × Xd as hD(x) = |{y ∈ D : x = y}|.

2It can be used also Laplace noise, however here we focus in Gaussian noise as it provides better tail bounds.
3k comes from a union bound on Gaussian tails over

∏k
i=1 |Xi| = O(2k) elements.
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Figure 1: An example of the non-negative hierarchical tree defined by hierarchical queries for a data universe X = {y1
1 , y
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2}. The hierarchical consistency assures that the tree is hierarchical, so that child nodes’ attributes sum to their father’s

attribute.

that it does not answer all k-hierarchical queries simultaneously. Instead, queries are answered sequentially, starting
from the root of the hierarchy and proceeding down the tree. The mechanism employs a more sophisticated convex
optimization procedure and produces a complete differentially private contingency table D̃ with non-negative and
integer counts. Nevertheless, no formal utility analysis of the algorithm has been provided. An alternative method for
generating general purpose synthetic DP datasets is the Multiplicative Weights Exponential Mechanism (MWEM) [4],
which is perhaps the most well-known in this category. MWEM achieves an error of Õ(

√
nd), thus its performance is

constrained by sampling error.

Contributions InfTDA is a specific implementation of a hierarchical TopDown algorithm that employs constrained
optimisation based on maximum error minimisation (Chebyshev distance), rather than mean squared error minimisation.
The algorithm produces a differentially private contingency table D̃ with non-negative integer counts and guarantees a
maximum absolute error of Õ(

√
k3d) for each k-hierarchical query. Intuitively, the proof shows that the error introduced

by Gaussian noise accumulates linearly across the levels of the hierarchical tree. The method is scalable, as it can
be executed independently on each branch of the hierarchical tree, and each privatisation mechanism runs in at most
O(maxi |Xi|) time. Alongside InfTDA, Boninsegna and Silvestri [2] introduced IntOPT, an optimisation procedure
that operates entirely in the integer domain and requires at most O(maxi |Xi|2) steps to solve the constrained problem.

2 Preliminaries

Non-Negative Hierarchical Tree A tree T of depth d is a tuple T = (V,E): V = ∪dk=0Vk is the set of nodes, with
Vk denoting the set of nodes at level k ∈ {0, . . . , d}; E is the set of edges between consecutive levels. A node at level
k is indicated with uk ∈ Vk. The set of children to a node is indicated by a function C : Vk → 2Vk+1 for any level
k ∈ {0, . . . , d}. Each node of the tree has an attribute q(uk). InfTDA works for any tree data structure defined as
follows

Definition 1 (Non-Negative Hierarchical Tree [1]). A tree T = (V,E) is said to be non-negative if it contains non-
negative attributes q(u) ≥ 0 for any u ∈ V . The tree is hierarchical if the attribute of u is the sum of the attributes of
its children C(u). Specifically, for every u ∈ V which is not a leaf, we have q(u) =

∑
v∈C(u) q(v).

This paper focuses on integer attributes, so that q(u) ∈ N0 for any u ∈ V . Additionally, it will be used qC(uk), which
is the vector containing the attributes of the children of uk.

Hierarchical Queries In this paper, we focus on data points containing d categorical features X = X1 × · · · × Xd

where each Xi is a set of |Xi| ≥ 2 categories. A dataset consists of a multiset of n points for X , thus D ∈ Xn.

Definition 2 (Counting Query). A counting query is defined by a function qi : X → {0, 1}. Given a dataset D, we will
abuse notation and write qi(D) to denote the sum of the values of the function qi on D as qi(D) =

∑
x∈D qi(x)

A k-way marginal query counts the number of points in D that share the same values for a specified set of k attributes.

Definition 3 (k-way marginal query). A k-way marginal is defined by a subset S ⊆ [d] of |S| = k, together with
a particular value of each of the features y ∈

∏
i∈S Xi with yi ∈ Xi for any i ∈ S. Given such a pair (S, y), let

X (S, y) = {x ∈ X : xi = yi ∀i ∈ S}. The corresponding counting query qS,y is defined as qS,y(x) = 1(x ∈ X (S, y))

There are 2d possible k-way marginal queries, corresponding to the cardinality of the power set of [d]. This paper
focuses on a specific subset of these marginal queries, referred to as k-hierarchical queries.

Definition 4 (k-hierarchical query). A k-hierarchical query is a k-way marginal query with S = [1, . . . , k].
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Algorithm 1 InfTDA
Require: Tree T = (V,E) of depth d, privacy budget ρ > 0.

1: Ṽ0 ← {(u0, n)}
2: for k ∈ (1, . . . , d) do
3: Ṽk ← {}
4: for (u, c) ∈ Ṽk−1 do

5: q̃← qC(u) +NZ

(
0, d/ρ

)|Xk|

6: q̄← IntOpt
(
q̃, c
)

7: C ← C(u)
8: X ← {(Cj , q̄j) : q̄j > 0}
9: Ṽk ← Ṽk ∪X

10: return D̃ = Ṽd

1: procedure IntOpt(x, c).
2: z← max

(⌈ c−∑
i xi

dim(x)

⌉
,−x

)
3: t← ∥z∥∞
4: I ← sorted indices of x in ascending order
5: j ← 0
6: while

∑
i zi > c−

∑
i xi do

7: ∆←
∑

i zi − c+
∑

i xi

8: zI[j] ← max(zI[j] −∆,−xI[j],−t)
9: j ← (j + 1) mod |I|

10: if j = 0 then
11: t← t+ 1
12: return x+ z

The hierarchy follows from a simple observation, a single k-hierarchical query can be obtained by summing all the
k + 1 hierarchical queries with the same features.

Observation 1 (Hierarchical Consistency). For any k ∈ [d− 1] and for any y ∈
∏k

i=1 Xi we have that

qSk,y(D) =
∑

yk+1∈Xk+1

qSk+1,(y,yk+1)(D).

For convenience, we define qS0(D) = n so that qS0(D) =
∑

y1∈X1
qS1,y1(D).

Thus, all the k-hierarchical queries can be arranged into a non-negative hierarchical tree, as shown in Figure 1. The
tree contains at each level k all the k-hierarchical queries, thus for any y ∈

∏k
i=1 Xi there is a unique uk ∈ Vk s.t.

q(uk) = qSk,y(D). The error considered in this work is the maximum absolute error for each k-hierarchical query,
hence maxy∈

∏k
i=1 Xi

|qSk,y
(D)− qSk,y

(D̃)| for any k ∈ {0, . . . , d}.

Differential Privacy The neighbouring relation considered in this work is by substitution of a single data point,
which is more precisely called bounded differential privacy [5]. With this definition, the size of the dataset does not
change among neighbouring datasets, making the query qS0

(D) = n non-sensitive. The mechanism considered in this
work is the multivariate discrete Gaussian mechanism [6], which adds integer noise sampled from a discrete Gaussian
distribution satisfying zero-concentrated differential privacy (zCDP) [7].

3 TopDown Mechanism with Chebyshev Distance

This section introduces InfTDA. The algorithm constructs a privatized non-negative hierarchical tree with integer
attributes, where the leaves correspond to the counts of a private full contingency table D̃. The mechanism employs
a TopDown approach: at each level k, discrete Gaussian noise is added to the attributes, and they are optimized to
satisfy the consistency relationship with level k − 1, and non-negativity, by minimizing the Chebyshev distance (i.e.,
the maximum error) with the private estimates.

InfTDA The detailed pseudocode of InfTDA is provided in Algorithm 1. The process begins by constructing the root
Ṽ0 of the differentially private tree in line 1. Here, u0 denotes the root node of the input tree, while n represents its
attribute. The algorithm then starts the TopDown loop in line 2. Each iteration aims to construct the set of nodes at level
k of the differentially private tree, instantiated in line 3. Each node of the previous level k − 1 is sampled in line 4 and
used as a constraint. In line 5 the discrete Gaussian mechanism with ρ/d privacy budget (for zCDP) is applied to the
attributes qC(u) of the child nodes of the constraint. Then, in line 6 the private attributes q̃ are post-processed to satisfy
the constraints. The algorithm IntOpt solves the following integer optimization problem by minimizing the Chebyshev
distance

P(x, c) := argmin
y
||x− y||∞ s.t.

dim(x)∑
i=1

yi = c. and yi ∈ N0 ∀i ∈ [1, . . . , dim(x)] (1)

In line 7, the set of child nodes of the constraint is constructed, and it is augmented with the corresponding post-
processed DP attributes in line 8, dropping nodes with zero attributes. This final step effectively reduces the size of
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the DP tree and the running time of the algorithm, particularly for sparse datasets. In fact, if there is a node uk with
optimized attribute q̄(uk) = 0, then, by consistency, the entire branch of the tree starting at uk will also have nodes
with zero attributes. Finally, in line 9 the set of DP nodes is updated, and this set will serve as constraints in the next
iteration. The algorithm outputs the leaves of the DP tree, which constitute a full contingency table D̃.
Theorem 1 (Utility and Privacy of InfTDA). Let D = (X1 ×Xd)

n be a dataset containing n points of d categorical
values. Let D̃ be the dataset returned by InfTDA. Then, |D̃| = n and for any k ∈ [1, . . . , d] and β ∈ (0, 1) we have
that

Pr

 max
y∈

∏k
i=1 Xi

∣∣∣qSk,y(D)− qSk,y(D̃)
∣∣∣ ≤ k∑

ℓ=1

√√√√8d

ρ
log

(
k ·
∏ℓ

i=1 |Xi|
β

) ≥ 1− β. (2)

Additionally, InfTDA satisfies ρ-zCDP.

Proof. We refer the reader to Appendix A for the utility proof. Privacy is ensured through composition, parallel
composition, and post-processing. A privacy budget of ρ/d is allocated to each level of the tree, as the ℓ2-global
sensitivity of each k-hierarchical query is

√
2, and each level represents a partition of the data. By applying the

composition rule of zCDP across d levels, the privacy guarantee is established.

IntOpt The main difference between InfTDA and the TopDown algorithm developed by the US Census [2] lies in
the optimization procedure. In InfTDA, Chebyshev minimization was chosen for two key reasons: to enable a utility
analysis of the mechanism and to design a straightforward optimizer that operates directly in the integer domain. In
contrast, in [2] the mechanism solves a Euclidean minimization in two steps. First, the problem is solved in the real
domain using convex optimization techniques; then it searches for the best rounding using an integer linear program.
IntOPT solves Chebyshev minimization in one shot entirely in the integer domain. Algorithm 1 shows a simple version
that runs in O(c) steps. A version that runs in O(min(|dim(x)|2, c)) is presented in Appendix C in [1].

The main approach to solve P(x, c) is to first compute a lower bound for the Chebyshev distance. Based on this bound,
a non-negative solution is then constructed with ℓ∞ norm no greater than the lower bound and with elements summing
to a value exceeding c. Subsequently, IntOPT reduces the elements to ensure that the summation constraint is satisfied,
while increasing the Chebyshev distance as little as possible. More precisely, P(x, c) is equivalent to the following
problem in the real domain for z = y − x

minα ≥ 0 s.t. zi ∈ [−α, α] and zi ≥ −xi and
∑
j

zj = c−
∑
j

xj ∀i ∈ [1, . . . , dim(x)].

This problem has a lower bound α ≥ max
(∣∣∣ c−∑

i=1 xi

dim(x)

∣∣∣ ; −mini xi

)
in the real domain, which translates to a

lower bound in the integer domain by taking the ceiling function. In line 2 of IntOPT, z is initialized such that
∥z∥∞ ≤ max

(⌈∣∣∣ c−∑
i=1 xi

dim(x)

∣∣∣⌉ ; −mini xi

)
. Furthermore, since

∑
i zi ≥ c −

∑
i xi

4, it is sufficient to reduce the
elements of z until this constraint is satisfied. The reduction is applied uniformly across the elements to minimise the
increase in Chebyshev distance. This procedure can be implemented through different strategies, resulting in multiple
possible solutions. Indeed, Chebyshev optimisation does not admit a unique solution. The method adopted in IntOPT
is based on two main choices: (a) the reduction is applied iteratively following the indices of x that sort it in ascending
order (line 4), and (b) during the first iteration, each element is reduced by the maximum possible amount that does not
alter ∥z∥∞ (line 3). The underlying idea is to prioritise setting to zero the private counts that are negative or small, as
these are more likely to correspond to sensitive counts that were originally zero. Such choices have been demonstrated
to effectively reduce the presence of false positives in the private contingency table [1], when compared to alternative
optimisation strategies.

4 Conclusions and Open Questions

This paper has presented a generalisation of InfTDA for a generic collection of data points characterised by d categorical
features. The proposed mechanism offers theoretical guarantees for any k-hierarchical query, ensuring a maximum
absolute error of O(

√
k3d). Furthermore, the mechanism has been shown to perform effectively in practice on both

real-world and synthetic datasets [1]. However, it remains an open question whether it is possible to achieve an error of
Õ(
√
kd), as attained by the hierarchical mechanism, while still producing a contingency table D̃ with non-negative

integer counts.

4∑
i=1 max

(⌈
c−

∑
i=1 xi

dim(x)

⌉
, −xi

)
≥

∑
i=1

⌈
c−

∑
i=1 xi

dim(x)

⌉
≥ c−

∑
i=1 xi
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A Utility of InfTDA

We start with the utility of the discrete Gaussian mechanism.

Corollary 1 (Corollary 9 [6]). Let Z ∼ NZ(0, σ
2). Then Var[Z] ≤ σ2 and Pr[Z ≥ t] ≤ e−

t2

2σ2 for any t ≥ 0.

Now we are ready to prove the full version of the utility Theorem for InfTDA.

Proof of utility in Theorem 1. Let us focus on one k-hierarchical query, qSk,y(D) for some y ∈
∏k

i=1 Xi and k ∈
[1, . . . , d]. The non-negative hierarchical tree represents this query with an attribute of a node uk at level k. Let this
attribute be q(uk), while q̃(uk) be the attribute returned by the Gaussian mechanism before the optimization is applied,
and q̄(uk) after the optimization. Since q̄(uk) is the differentially private query returned by InfTDA, we have by triangle
inequality that

|err(uk)| = |q(uk)− q̄(uk)| ≤ |q(uk)− q̃(uk)|+ |q̃(uk)− q̄(uk)|.
The first term is just the absolute value of a Gaussian random variable, so we focus on the second term. Let uk−1 be
the father node of uk, then q̄(uk) is an element of the vector q̄C(uk−1) ∈ N|Xk|

0 solution to the optimization problem
P(q̃C(uk−1), c), where c = q̄(uk−1), thus

|q̃(uk)− q̄(uk)| ≤ ∥q̃C(uk−1)− q̄C(uk−1)∥∞.

Let us consider another vector ξ ∈ Z|Xk|, called the offset, such that qC(uk−1) + ξ lies within the feasible region of the
constrained optimization problem P , then

qC,j(uk−1) + ξj ≥ 0 (3)
|Xk|∑
j=1

qC,j(uk−1) + ξj = q̄(uk−1). (4)

As the vector q̄C(uk−1) is a solution to the optimization problem, it minimizes the Chebyshev distance with q̃C(uk−1)
under the non-negativity and summation constraints, then by triangle inequality

∥q̃C(uk−1)− q̄C(uk−1)∥∞ ≤ ∥q̃C(uk−1)− qC(uk−1)− ξ∥∞ {q̄C(uk−1)} is a optimal solution}
≤ ∥q̃C(uk−1)− qC(uk−1)∥∞ + ∥ξ∥∞ {due to triangle inequality}.

As |q(uk)− q̃(uk)| ≤ ∥q̃C(uk−1)− qC(uk−1)∥∞, the upper bound becomes

|err(uk)| ≤ 2∥q̃C(uk−1)− qC(uk−1)∥∞ + ∥ξ∥∞. (5)

The problem is now to find an upper bound for ∥ξ∥∞.

To upper bound ∥ξ∥∞, we now construct an example of ξ satisfying the constraints and having a bounded ℓ∞ norm. By
construction, from Equation 4 and hierarchical consistency, we have that

|Xk|∑
j=1

ξj = q̄(uk−1)−
|Xk|∑
j=1

qC,j(uk−1) = q̄(uk−1)− q(uk−1) = err(uk−1).

If err(uk−1) ≥ 0 we can take ξj =
err(uk−1)

|Xk| for any j ∈ [|Xk|] as a solution satisfying the summation constraint and
the inequality constraint in Equation 3. However, this is not sufficient. If err(uk−1) < 0 the inequality constraint
might not be satisfied. In this scenario we might consider a solution where ξi = 0 for any i ∈ [|Xk|] \ {i∗} where
ξi∗ = −|err(uk−1)|. Any zero element satisfies the constraint in Equation 3 as qC,j(uk−1) ≥ 0. If ξi∗ ≥ −qC,i∗(uk−1)
then we finish and obtain an upper bound ∥ξ∥∞ ≤ |err(uk−1)|. In the other case where ξi∗ < −qC,i∗(uk−1) we need to
augment ξi∗ up to meet −qC,i∗(uk−1). By doing so we increase

∑
i ξi making necessary to decrease some elements of

the offset. As we are reducing elements that initially are zero, the new offset still contains only negative elements, and
as
∑

i ξi = −|err(uk−1)| any element cannot be less than −|err(uk−1)|. Thus, we conclude that there always exists an
offset such that ∥ξ∥∞ ≤ |err(uk−1)|.
Now we continue from the upper bound in Equation 5

|err(uk)| ≤ 2∥q̃C(uk−1)− qC(uk−1)∥∞ + |err(uk−1)|. (6)

By taking the maximum we obtain

max
uk∈Vk

|err(uk)| ≤ 2 · max
uk−1∈Vk−1

∥q̃C(uk−1)− qC(uk−1)∥∞ + max
uk−1∈Vk−1

|err(uk−1)|.
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Completing the recurrence relation by ending at err(u0) = 0 we get

max
uk∈Vk

|err(uk)| ≤ 2 ·
k∑

ℓ=1

max
uk−ℓ∈Vk−ℓ

∥q̃C(uk−ℓ)− qC(uk−ℓ)∥∞. (7)

Note that in the previous equation uk−1 is the father node of uk, as previously defined, whereas uk−2 is the father node
of uk−1 and so on. We may upper bound each term in Equation 7 by using Corollary 1 with a union bound over the
dimension of each vector, which is |Xk−ℓ+1|, times the number of nodes at level Vk−ℓ, which are

∏k−ℓ
i=1 |Xi|. Thus, we

obtain

Pr

 max
uk−ℓ∈Vk−ℓ

∥q̃C(uk−ℓ)− qC(uk−ℓ)∥∞ ≤

√√√√2d

ρ
log

(
k ·
∏k−ℓ+1

i=1 |Xi|
β

) ≥ 1− β

k
.

By re-indexing Equation 7, summing the previous upper bounds, and applying an union bound, we finally obtain our
claim

Pr

max
uk∈Vk

|err(uk)| ≤
k∑

ℓ=1

√√√√8d

ρ
log

(
k ·
∏ℓ

i=1 |Xi|
β

) ≥ 1− β.
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