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Abstract. Accessibility is a critical dimension in agendas involving urban policies. Furthermore, 
the notion of accessibility has recently gained further popularity since the formulation of the ‘15-
minutes-city’ paradigm and the consequences of the COVID-19 pandemics in the life routines. 
However, when interested in accounting for accessibility from a formal perspective, researches 
and practitioners should fairly and comprehensively use pertinent indicators, in accordance with 
the density of potential destinations, such as those functions that are typically related to the 
everyday life of residents (e.g., schools, healthcare) and facilities used by most of the users’ 
categories (e.g., restaurants, groceries, ATMs). Furthermore, both the evaluation of the 
accessibility of a city and whether it can be effectively ascribed among the ‘15-minutes’ eligible 
cities should take into account the demographic profile of residents, as they may have different 
needs and mobility behaviours. This is particularly significant when the accessibility is intended 
as a measure of walkability of neighbourhoods. With this latter regard, the majority of the 
previous researches focused on indicators that don’t explicitly consider the population 
characteristics, such as age. Additionally, most of the indicators focus on the number of facilities 
reachable within a given time cutoff, while the counterpart of the latter, i.e., as a measure of 
attractiveness, such as the number of users that can reach that given area, is not evaluated 
explicitly. In this paper, a comprehensive formulation able to capture both accessibility and the 
attractivity, as well as the different degree of ‘walkable’ accessibility according to the socio-
demographic profiles of population, will be presented and tested across some Italian cities. This 
indicator is aimed to provide an operative tool for urban and transportation planners, as well as 
for private stakeholders, when they are in charge of evaluate the degree of ‘walkable’ 
accessibility. Furthermore, the use of open and standardized data is intended being a main 
strength of the proposed methodology, as it can be easily replicated in other contexts. 
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Towards a fair and comprehensive evaluation of 
Walkable Accessibility and Attractivity in the 15-minutes 

city scenario based on demographic data  

1 Introduction 

Accessibility is a key notion in several disciplines [1], [2], emerging in the last decades 
as a prominent topic of research. Different definitions have been formulated to capture 
some aspects of this comprehensive concept [3]. They range from the ability to reach a 
specific location [4], [5] to the focus on individuals and their freedom of satisfying the 
trip purposes towards the desired activities [6] and the related benefits, given the 
economic impacts related to the access to a specific destination [7], [8]. As pointed out 
by [9], several components are included and should be considered simultaneously when 
accounting for accessibility. Measures of accessibility typically combine the costs of 
transport, which can be expressed either as travel distance or monetary cost, or as the 
attractivity of the destination, related to the number of activities located at the desired 
destination [1], [10]. With regards to attractivity, the location and the density of 
activities at the potential destinations [11], as well as their variety and diversity in their 
typology [12], may influence citizens’ predispositions and habits, and consequently 
may affect the accessibility of a place. Given their role in transportation and urban 
planning domains, accessibility and attractivity have been analyzed as major and 
critical components of the so-called ‘15-minutes-city’ (15MC) paradigm. This concept 
has been defined by academia [13] and gained appeal from applications and strategies 
put in practice in different contexts [14]. Despite the use of several time thresholds [15], 
[16], [16], in the domain of accessibility the ‘15 minutes’ is still the most popular and 
investigated time window. From a wider perspective related to urban planning, the 
15MC paradigm is rooted in the idea that different aspects of everyday life should be 
located in the same area and integrated, e.g., at neighborhood level, thereby providing 
citizens and city users with a reasonable and adequate number of facilities related to the 
routinary needs of people [17]. A non-exhaustive list of facilities may include both 
public services, such as schools, healthcare structures or banks, and commercial 
activities, such as restaurants, groceries or shops. In concrete terms, this assumption 
advocates that facilities and services should be accessible and in proximity to places of 
residence [12], within a travel time not exceeding 15 minutes [18] covered by active 
mobility modes, such as walking [8] or cycling [19]. Consequently, the 15MC paradigm 
includes both physical and social factors. About the previous, built environment [20], 
[21] and land-use mix [22] provide the underlying conditions towards the full 
implementation of the paradigm. About the social factors, several authors [14], [19], 
[23], [24] refer to social inclusion and demographic profile of population as main 
aspects. This latter is of paramount importance, as different socio-demographic groups 
may have dissimilar needs and mobility habits and behaviors, especially when focusing 
on walking. However, although the theoretical framework of the 15MC paradigm may 
appear straightforwardly implementable and measurable in any circumstances, it has 
been pointed out that there is a need for contextual solutions and local reinterpretations 
[12], [15], [17]. In particular, since the distribution of facilities may denote the stratified 
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socio-economic development of a neighborhood or a city, a fair and comprehensive 
measure of the actual ‘walkability’ of a site requires adequate instruments that 
effectively combine the abovementioned dimensions related to the 15MC paradigm.  

Based on these premises, two comprehensive indicators able to capture the 
accessibility and the attractivity of an area will be presented and tested in three Italian 
cities, namely Brescia, Milano and Venezia. The choice of these cities is justified by 
their characteristics, either the size and the number of major functions that may attract 
several categories of users (Milano and, yet at lower grade, Brescia), or the 
characteristics of urban fabric that may affect the walkability (Venezia). The proposed 
measures include the sociodemographic profiles of the registered population, as well as 
some main facilities related to the typical everyday life of most users' categories. 
Therefore, the proposed approach is aimed at being an operative tool for urban and 
transportation planners, as well as for private stakeholders, when they are in charge of 
evaluating the degree of ‘walkable’ accessibility within the context of the 15MC. 
Results will be confronted with some measures, namely the Closeness Centrality [25] 
and the Anselin Local Moran’s I [26], to test the ability of the metrics in unveiling the 
spatial patterns of accessibility and attractivity. Regarding the previous, it is proposed 
to consider the role of the road network in the computation of the metrics. About 
Anselin Local Moran’s I, this index is intended as an appropriate tool in the detection 
of specific patterns and spatial relationships, as it identifies clusters of features with 
similar or dissimilar values. 

2 Previous works 

Several previous researches elaborated indexes and metrics to analyze the walkability 
of a place, and some of them are specifically devoted to analyses of 15MC. The most 
famous walking-related index is the WalkScore [27], which proposes a measure of 
proximity to facilities within a 0-100 scale. Today, it is a commercial-oriented platform, 
providing analyses related to the facilities reachable by walking, as well as information 
related to the real estate market. A main drawback is the limited performance in some 
countries, while it is fully implemented in the US, UK, Canada and Australia. A recent 
example aimed at providing a comprehensive analysis of 15MC is the 15min-City index 
proposed in [17], where scores related to walkability and cycling of several cities can 
be accessed by a web platform. The scores are centered on a regular grid made of a 
hexagonal tessellation, and they refer to the number of facilities and the related travel 
time. An analogous scoring procedure is the 15min City Score Toolkit elaborated by 
[28], which is based on the intersection between isochrones pivoted to the Uber H3 
hexagonal tessellation and the facilities reachable within a 15-minutes walking trip. 
Tested only in Italy, at least to the best of authors’ knowledge, the Next Proximity Index 
(NEXI) [29] provides a scalable index which considers also the potential discomfort of 
walking accessibility. Both the 15min-City index, the 15min City Score Toolkit and the 
NEXI extract the list and the location of facilities from OpenStreetMap (OSM) [30].  

Based on this review, it is possible to identify some commonalities and differences 
between the methodology described in this paper and those implemented elsewhere. In 
particular, the proposed approach is aimed at an enhanced and easy scalability, 
replicability and interoperability in several contexts, based mostly on open data. Like 
some of the methods mentioned above, the Uber H3 hexagonal tessellation and OSM 
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database have been used as spatial reference and main source, respectively. However, 
a dynamic integration of POIs on the network, the use of fine-grained information 
related to the registered population, as well as the computation of distances based on 
routing rather than the use of buffering measures such as the isochrones, are noteworthy 
novelties. Moreover, the proposed approach focuses on both direct and indirect 
measures, namely attractivity and accessibility, while most of the previous works focus 
on accessibility only. 

3 Materials and Methods 

In this section, we explore the dataset employed, the analytical procedures applied, and 
the metrics developed. The analysis was conducted using Python 3.12, leveraging 
several packages for data extraction [31], tessellation [32], geospatial data analysis [33], 
geometric object manipulation [34], and network analysis [35]. The street network and 
the facilities were extracted from OpenStreetMap (OSM) [30], the largest and most 
successful example of Volunteered Geographic Information (VGI) project. The density 
of facilities is plotted in Figure 1. Specifically, Protocol Buffer data for each city was 
downloaded from [36] and analyzed locally using the Pyrosm library. Using Pyrosm, 
we extracted the walkable street network and POIs across the following categories: 
restaurants, bars, schools, healthcare structures, grocery stores, parks, arts and cultural 
venues, and banks. For each city, administrative boundary polygons were sourced from 
ISTAT’s "Confini Amministrativi" [37] dataset, while resident population data was 
taken from the Italian 2021 Census. Population groups were categorized by age to 
assign different walking speeds, as described in Table 1. The density of population is 
plotted in Figure 2. It is worth noting that a quartile scale has been used to allow an 
easier comparison between the cities analyzed. Additionally, the geometries of Census 
sections were retrieved from ISTAT’s "Basi Territoriali" [37]. 

 
Figure 1 – Distribution of facilities. 
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Figure 2 – Distribution of population. 

 
 

Table 1 - Velocity for each population age category group, according to [36]. The ISTAT tags 
are the labels used by the Italian Census for these categories [37]. 

3.1 Data Preparation 

Data preparation consists of three phases: tessellation (Section 3.1.1), i.e., representing 
the city on a regular grid; network preparation (Section 3.1.2), i.e., cleaning OSM road 
network data and geometries; network matching (Section 3.1.3), i.e., assigning each 
facility and tessellation’s center to the closest edge of the road network. 

3.1.1 Tessellation 

Each of the analyzed cities was divided into a regular tessellation made up of hexagonal 
cells [38]. Next, the tessellations were enriched with residential population data from 
the Census sections. For each hexagon in the tessellation, we identified the Census 
sections intersecting it and updated the hexagon with population information weighted 
by the fraction of the intersection area. Specifically, let S be the set of Census sections 
and p(s, a) the resident population of age category a within section s. The resident 
population of age category a in tessellation t, denoted as p(t, a), is computed as: 

 

3.1.2 Network preparation 

Then, we extracted the walkable street network as a dataset comprising nodes and 
edges. From this dataset, we built a weighted graph, assigning edge weights based on 
street lengths in meters. The tested workflow, along with the choice of the libraries, 
allowed a significantly faster performance compared to other similar platforms [39] 
used elsewhere [28], particularly for shortest path computations. To enhance the 
reliability of our analysis, we focused on the largest connected component G of the 

Age a ISTAT tag Velocity (m/s) 
[10 - 29] P-(16, 17, 18, 19) 1.34  
[30 - 49] P-(20, 21, 22, 23) 1.26 
[50 - 59] P-(24, 25)  1.23 
≥ 60  P-(26, 27, 28, 29)  1.21 
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graph and applied a sanitization process to handle closely clustered graph components. 
This method proved effective in addressing cases where OSM data contained missing 
edges or imprecise intersections, ensuring a more connected and accurate graph 
representation. Specifically, we iteratively incorporated sub-graphs with at least one 
node within a Euclidean distance of less than 10 meters from any node in the largest 
connected component, by creating an edge between the closest pair of nodes and 
assigning the Euclidean distance as the edge weight. This process continued until no 
remaining sub-graphs were close enough. This issue was relevant in Venezia, where 
OSM street network produced a disconnected component for Cannaregio. 

3.1.3 Network Matching  

After extracting the facilities from OSM using Pyrosm and creating the tessellation, the 
next step involved mapping them onto the network. Each facility is represented as a 
point, while each tessellation is represented by its centroid. Points were dynamically 
integrated into the network by identifying the closest edge in G for each point. Each 
point is projected onto the identified edge, added as a new node in G, and the edge is 
split to accommodate the newly added node. Finally, the distance matrix was computed. 
For each tessellation t and each facility ic of category c, the distance in meter d(t, ic ) is 
computed as the shortest path distance in G. 
 
3.2 Metrics 

We divide this section into attractivity and accessibility metrics. The former measures 
the ability of each facility to attract users, the latter measures the level of attractive 
facilities within 15-minutes walking distance of a given census area. 
 
3.2.1 Attractivity Measures for POIs  

We assigned each facility an attractivity index that measures its ability to attract 
residents who can reach it within a 15-minute walking distance. This index is a ranked 
statistic that compares the number of residents visiting the facility to those visiting other 
facilities of the same category. It was calculated separately for each population age. Let 
Pc be the set of facilities of category c. For any facility ic∊Pc, let T(ic, a) denote the set 
of tessellation cells from which residents of age a can reach ic within 15 minutes. Let 
p(ic, a) = ∑t∊T(ic, a)p(t, a) be the total number of residents of category a that can reach ic 
within 15 minutes. We define the attractivity index of ic for residents of age a as  

 

 
 

where the rank is defined as rankX(y)=|{x∊ X : x ≤ y}|. For convention, equal values are 
associated with their minimum rank. Finally, a unique attractivity index is computed 
by a weighted average over the population age classes where w(a) is a positive weight 
associated with each population category. In our results we used uniform weights. 
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3.2.2 Refinement Using Gravity Model 

The total resident population of age a that can reach facility ic within 15 minutes, 
represented as p(ic, a), is already a valuable indicator that approximates the workload 
of ic. However, it lacks insights into resident movements. Without relying on sensitive 
data and using only open-source information, we introduce an attractivity indicator 
designed to capture resident mobility. In the absence of actual mobility data, we 
simulate movement patterns using the Gravity model [39]. This model estimates the 
probability of movement based on a gravity law, where the masses are the populations 
at the origin and destination, and the probability decreases with the square of the 
distance between them. Here, we use as population masses the total population in each 
tessellation cell p(t) = ∑a p(t, a) and the total population that can reach each facility 
within 15 minutes p(ic)= ∑a p(ic, a). Thus, the probability of a movement from a 
tessellation cell t to a facility ic is 
 

 
 
for some normalization constant k. This constant can be computed by assuming that for 
each tessellation, for each category of facilities, and for each population age, the 
residents must visit at least one facility within a 15-minutes walk. In other words, we 
assume that the residents do not walk more than 15 minutes. Specifically, let Pt,c,a be 
the set of facilities of category c that population of age a can reach from tessellation t 
within 15 minutes. Then, by our assumption we have 

 

 
 
meaning that a different normalization is needed for each population age a. Thus, we 
have that the probability of a movement of population of age a from a tessellation cell 
t to a facility ic is 

 

 
 
With these probabilities, we can compute the population that goes to each facility 
according to the model, which we define as pg(ic, a). This is computed as an expected 
value 
 

 

 
 

which can substitute p(ic, a) to compute the attractivity index. 
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3.2.3 Accessibility Measures for Tessellation 

Our attractiveness measure builds on the approach proposed in [40], where the authors 
computed a weighted rank statistic for the number of facilities reachable within 15 
minutes from each tessellation cell. Here, we adapt this idea by integrating the 
attractivity index defined in the previous section. The key distinction is that we account 
for the varying importance of facilities, assigning greater weight to less attractive ones 
to better reflect their contribution to accessibility. The attractiveness index of a facility, 
which accounts for how many people can reach the facility, acts as a proxy for its 
workload. A lower workload is expected to correspond to better accessibility, as it is 
likely to translate to shorter waiting times and reduced crowding. Let T be the set of all 
tessellation cells, the accessibility index of a tessellation cell t for category of facilities 
c and for population age a is 

 
 
where the rank is calculated over the values of the summation argument for all 
tessellation cells, and Pt,c,a is the set of facilities of category c that population of age a 
can reach from tessellation t within 15 minutes. The term 1-Att(ic) encapsulates our 
assumption that an increase in a facility's attractiveness corresponds to a decrease in its 
accessibility. This inverse relationship arises because higher attractiveness typically 
leads to greater demand, thereby increasing the facility's workload. As the workload 
intensifies, the facility becomes less accessible to additional users, reflecting a trade-
off between desirability and availability. The key difference from [40] is that this 
approach ranks facilities by their inverse attractivity, whereas [40] counts the number 
of reachable facilities. As introduced in the previous section, an aggregated 
accessibility index can be computed as 

 

 
 
where first a weighted aggregation is computed for the category of facilities and then 
is computed for population age. In our results we used uniform weights for both 
population age and category of facilities. 

4 Results and Discussion 

This Section will present and discuss results. Some notable relationships between the 
metrics and areas will be described and referenced in accordance with the typology of 
land use and the name of some neighborhoods (Figure 3). Through a correlation 
analysis (Pearson’s ρ) [41] (Table 2, Table 3,  
Table 4 and Table 5), results will be analyzed and confronted with the metrics 
introduced in Section 1, namely Closeness Centrality and Anselin Local Moran’s I. As 
previously introduced, the aim of this analysis is to test the effectiveness of the metrics 
and to unveil relevant spatial patterns related to the accessibility and attractivity across 
the analyzed cities. 



9 

 

As a general remark, the distribution of accessibility and attractivity values is quite 
similar across the cities (see Figure 4 and  

Figure 5). Correlations in Table 2 and Table 3 suggest that there is a notable relation 
between the two metrics, albeit at different degrees (Milano ρ>0.8, Brescia and Venezia 
0.6<ρ<0.7; all p-value <0.001). Moreover, an additional computation was undertaken 
to compare the overall consistency of the metrics based on the walking speed as 
described in Section 3 against a computation based on an equal speed for all the groups 
(1.24 m/s). The results (cosine similarity analysis; all the values >0.9 for both the cities 
and measures) suggest that, despite the use of different values to provide a more 
accurate model of human behaviors, speed should not be considered a factor in 
enhancing accessibility and attractivity. 

In details, Brescia is more ‘accessible’ and ‘attractive’ along a ‘L-shaped’ corridor 
between the neighborhoods of Prealpino, Mompiano and Casazza, the historical city 
center, the train station and the business district of Brescia Due, while some other high 
values can be found at two major residential neighborhoods, such as San Polo and 
Buffalora. Notably, this corridor is overlaid by the subway line, the backbone of the 
local transit system, thus indicating that accessibility and attractivity in Brescia are 
influenced by both natural and anthropic factors. The natural factors comprise 
geographical features, such as the hills located in the eastern part of the city, while the 
anthropic factors are characterized by the presence of major facilities, such as the 
Hospital, the University campus or the business district at Brescia Due. While the 
former can be regarded as physical constraints that influenced the location of urban 
functions and facilities, the latter may have been a contributing factor in the locating 
activities. As for Milano, the plots report higher accessibility and attractivity within the 
historical city center (Brera, Duomo), as well as the increasing values in proximity to 
several strategic business districts and densely populated neighborhoods (Garibaldi, 
Isola, Stazione Centrale, Città Studi, Porta Romana, Tre Torri, Portello). The results of 
both metrics find correspondence with the spatial pattern that has historically 
characterized the urban development of Milano, namely several concentric ‘cores’ 
corresponding to the ancient city walls (recognizable by the red and pink background 
in Figure 3), with linear extensions corresponding to the main access roads. About 
Venezia, Figure 4 and  

Figure 5 suggest that the most ‘accessible’ and ‘attractive’ areas are located between 
San Marco and Castello, in a narrow area boarding the Canal Grande. It is worth noting 
that both measures overlay the most touristic areas, namely Rialto Bridge and San 
Marco Square, located in San Polo and San Marco. In both metrics, peripheral areas 
were found generally to be less 'attractive' and 'accessible' than the central areas, 
described in Figure 3 as the historical city centers. This finding supports the 
consolidated view of the city centers as the areas with notable presence of facilities and 
enhanced walking capability. Notably, results reported in Table 2 and Table 3 
corroborate this insight even in Venezia, which is generally considered to be a fully 
pedestrian-friendly city, at least in terms of its infrastructure. Nevertheless, notable 
clusters of higher attractivity can be found in some peripheral and populated areas of 
Milano (e.g., San Siro, Affori, Baggio, Niguarda, Gallaratese; about distribution of 
population refer to Figure 2). This latter result is supported by values in Table 2 and 
Table 3, as the coefficients describe a moderate correlation between the metrics, the 
population and the density of facilities, with higher values for Milano.  
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In view of these trends, some consistent results can be discussed. First, findings 
suggest that facilities are not equally distributed across the cities, where some 
neighborhoods result in oversupplied, while others lack an adequate provision of 
services for everyday life. This is more evident in Venezia (ρ<0.65, p-value <0.001), 
where several populated areas are not supplied by the analyzed facilities. Consistent 
with the abovementioned findings, coefficients related to the population (0.45<ρ<0.72, 
p-value <0.001) suggest that a considerable portion of residents live in ‘fully accessible’ 
neighborhoods, while some of them currently need longer walks to get to the desired 
destinations. Consequently, results have implications for the degree to which cities 
conform to the 15MC paradigm, as the 15MC-based planning approach should aim to 
bring facilities to neighborhoods, thus promoting a more livable and functional city 
[15]. Furthermore, although the distribution of facilities is a determining factor in the 
computation of the metrics, the moderate correlation (0.50<ρ<0.64, p-value <0.001) 
suggests that a high concentration in some areas fosters the location of additional 
facilities nearby and, conversely, hinders new settlements in other areas. A similar 
factor was previously observed in relation to the location of economic activities and 
their distribution across cities [42]. This conclusion is of paramount importance when 
dealing with touristic destinations, as the number of facilities may be strongly skewed 
in favor of those related to non-residential users, while residents may suffer the lack of 
everyday-life facilities [43], [44]. 

From a wider perspective, results suggest that the analysis based on the distributions 
of residents and facilities is effective in addressing local socio-economic dynamics [45]. 
This latter conclusion is corroborated when confronted with consolidated touristic 
patterns, such as in Venezia, as tourists’ needs may lead to inequalities and the 
replacement of the functions and accommodations traditionally devoted to residents 
[46], [47], [48]. Along with the previous analyses, a focus on Closeness Centrality and 
Anselin Moran’s I is proposed to test the spatial distribution of metrics and the effects 
of contextual factors e.g., the shape of the urban fabric. About Anselin Local Moran’s 
I, the cluster and outlier can be plotted in accordance with the surrounding elements of 
each feature (in the Figure 6 and Figure 7, COType). When I is statistically significant 
and positive, the features are part of a cluster, while when I is statistically significant 
and negative, the features are outliers. Conversely, when I is not statistically significant, 
the features are randomly distributed. The three cities report some clustering effect, 
albeit with different patterns, and wide areas without any significant result. However, 
the presence of ‘hot spots’ and ‘cold spots’ is only partially confirmed by the correlation 
analysis. While results related to Brescia are consistent, with a moderate correlation 
between I and the two metrics (ρ~0.6, p-value <0.001), Milano and Venezia report 
dissimilar values. Regarding the latter city, coefficients suggest that the more accessible 
a location, the lower its degree of clustering. About Closeness Centrality, low 
correlations (ρ<0.5, p-value <0.001) are found with the value of the metrics, and weak 
or absent in relation to I. These results suggest that the structure of the road network 
plays a prominent role in determining the access from and to a specific area, although 
there are marked differences among cities, while it has no substantial effect on the 
spatial patterns related either to accessibility or attractivity. 
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Figure 3 – Land use types and notable neighborhoods across the analyzed cities. 

 
Figure 4 – Accessibility across the analyzed cities (numbers are referenced in Figure 3). 

 
 

Figure 5 – Attractivity across the analyzed cities (numbers are referenced in Figure 3). 
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Figure 6 – Anselin Moran’s I – Accessibility (numbers are referenced in Figure 3). 

 
 

Figure 7 – Anselin Moran’s I – Attractivity (numbers are referenced in Figure 3). 

 

Table 2 - Correlation analysis – Accessibility. 
 Attractivity Population Facilities Centrality 
AccessibilityOverall 0.660*** 0.611*** 0.572*** 0.391*** 
AccessibilityBrescia 0.669*** 0.690*** 0.546*** 0.495*** 
AccessibilityMilano 0.830*** 0.711*** 0.639*** 0.617*** 
AccessibilityVenezia 0.626*** 0.560*** 0.505*** 0.348*** 
     
 Note: *** p-value < 0.001 
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Table 3 - Correlation analysis – Attractivity. 
 Accessibility Population Facilities Centrality 
Attractivity Overall 0.660*** 0.451*** 0.498*** 0.169*** 
Attractivity Brescia 0.669*** 0.583*** 0.540*** 0.412*** 
Attractivity Milano 0.830*** 0.698*** 0.534*** 0.548*** 
Attractivity Venezia 0.626*** 0.486*** 0.621*** 0.258*** 
     
Note: *** p-value < 0.001 

 
Table 4 - Correlation analysis – Anselin Moran’s I for Accessibility. 
 Accessibility Centrality 
I Accessibility Overall 0.132*** -0.078*** 
I Accessibility Brescia 0.600*** 0.368*** 
I Accessibility Milano 0.104*** -0.049* 
I Accessibility Venezia -0.266*** -0.010 
   
Note: * p-value < 0.05; *** p-value < 0.001 

 
Table 5 - Correlation analysis – Anselin Moran’s I for Attractivity. 

 Attractivity Centrality 
I Attractivity Overall 0.458*** -0.040 
I Attractivity Brescia 0.549*** 0.267*** 
I Attractivity Milano -0.228 -0.359** 
I Attractivity Venezia 0.532*** 0.099* 
   
Note: * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001 

5 Conclusions 

In this paper, a comprehensive method to account accessibility and attractivity in urban 
areas is presented and tested in three Italian cities, namely Brescia, Milano and Venezia. 
The metrics are tested within the 15-minutes-city (15MC) paradigm. Coherently to the 
principles the 15MC is rooted in, the socio-demographic profile of population, the 
characteristics of the road network and the density of facilities for everyday life of users 
are considered. Subsequently, some well-known metrics, such as Closeness Centrality 
and Anselin Moran’s I, were adopted to test the effectiveness of the results. Based on 
the outcomes, Authors posit that the method provides a scalable and intuitive tool for 
public and private stakeholders to enhance policies aligned with 15MC paradigm. 
Indeed, this paradigm aims to ensure that essential services are accessible within a short 
distance from residents' homes. The use of open and standardized data sources, such as 
official statistics, and information from the open databases, facilitates informed 
decision-making, promotes stakeholder engagement, and enhances transparency and 
accountability in the policymaking process. Moreover, the scalability and the adherence 
to diverse urban contexts of the proposed method enable the development of tailored 
strategies that address local needs while contributing to overarching sustainability 
objectives, including the enhancement of public health. Moreover, the adoption of 
standardized data facilitates continuous monitoring and evaluation of policy impacts, 
thereby instigating a continuous improvement cycle that, in turn, contributes to the 
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creation of more resilient, equitable and habitable urban environments. Some further 
researches may be built upon these findings. Authors mention the shift from static, i.e., 
the registered population, to dynamic inputs, e.g., the number of presences inferred 
from big data sources. This is intended to enhance the findings and address a significant 
limitation affecting the use of registered population data, which may be outdated and 
non-representative of the actual population composition, which encompasses residents 
and some city user categories, e.g., tourists, workers, commuters. Additionally, an 
approach based on the ‘real’ users may capture the effective needs of population and 
the provision of adequate services. This latter has been already demonstrated effective 
for modelling dynamics in urban areas [49], [50], [51]. Furthermore, the 15-minutes 
time window may be considered a vague or restrictive threshold when confronted with 
the wide spectrum of modal alternatives, which can potentially result in the under- or 
over-representation of accessibility and attractiveness. To address these concerns, the 
incorporation of transit infrastructures in a more advanced simulation model is 
proposed for subsequent developments of the research. 
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